Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.

نویسندگان

  • Toshiaki Endo
  • Ole Kiehn
چکیده

The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a "push-pull" operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase-related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase-related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a multilayered and distributed structure of the network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse

Motoneurons are traditionally viewed as the output of the spinal cord that do not influence locomotor rhythmogenesis. We assessed the role of motoneuron firing during ongoing locomotor-like activity in neonatal mice expressing archaerhopsin-3 (Arch), halorhodopsin (eNpHR), or channelrhodopsin-2 (ChR2) in Choline acetyltransferase neurons (ChAT+) or Arch in LIM-homeodomain transcription factor I...

متن کامل

Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord.

The interneuron populations that constitute the central pattern generator (CPG) for locomotion in the mammalian spinal cord are not well understood. We studied the properties of a set of commissural interneurons whose axons cross and ascend in the contralateral cord (aCINs) in the neonatal mouse. During N-methyl-D-aspartate (NMDA) and 5-HT-induced fictive locomotion, a majority of lumbar (L2) a...

متن کامل

Afferent control of locomotor CPG: insights from a simple neuromechanical model.

A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II)...

متن کامل

Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.

We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-rese...

متن کامل

Neonatal Circuits

Rhythmic patterns of coordinated movement are produced by networks of spinal neurons known as ‘central pattern generators’ (CPGs). These circuits have been studied using isolated spinal cord preparations that can generate a pattern of motor discharge that resembles locomotion (locomotor-like activity). The isolated spinal cord is more experimentally accessible than the equivalent in vivo prepar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 6  شماره 

صفحات  -

تاریخ انتشار 2008